LETTERS TO THE EDITOR

Immobilization of Silver(I) Hexacyanoferrate(II) in Thin Gelatin Layers

O. V. Mikhailov and R. A. Rozhentsov

Kazan State Technological University, Kazan, Tatarstan, Russia

Received May 15, 2000

Immobilization of hexacyanoferrates(II) of some p, d, and f elements (M) in thin gelatin layers, based on the electrophilic substitution of Ag(I) by M(II), M(III), and M(IV) on contact of silver(I) hexacyanoferrate(II) (Ag₄FC) immobilized in a gelatin matrix with aqueous solutions of appropriate metal halides MHlg₂, MHlg₃, and MHlg₄ (Hlg = Cl, Br), was studied in [1]. The initial gelatin-immobilized Ag₄FC matrices were prepared from immobilized systems containing elemental silver (obtained, in turn, from gelatin-immobilized AgHlg matrices by a standard procedure [2]) by treatment with aqueous alkaline solution of potassium hexacyanoferrate(III):

$$4Ag + 4[Fe(CN)_6]^{3-} \rightarrow Ag_4[Fe(CN)_6] + 3[Fe(CN)_6]^{4-}$$
. (1)

However, the standard electrode potential $E_{Ag^+/Ag}^0$ strongly depends on the particle size of silver and varies from -0.10 V for finely dispersed metal to +0.80 V for compact metal. With increasing concentration of silver in the matrix the average particle size of immobilized silver and $E_{Ag^+/Ag}^0$ increase, and its oxidation with $[Fe(CN)_6]^{3-}$ becomes more difficult. Our experiments show that reaction (1) in gelatin-immobilized matrix with the above solution is relatively slow, and at concentration of metallic silver in the polymer matrix more than 2.5 mol dm⁻³ the conversion of silver into Ag₄FC does not exceed 40% even upon prolonged contact ($\tau > 2$ h) of the silver-containing matrix with potassium hexacyanoferrate(III) solution. Such conversion degree is insufficient, but our attempts to increase the conversion of silver into Ag₄FC by only changing the concentration of potassium hexacyanoferrate(III) or solution pH failed. We found that at a given process time the Ag \rightarrow Ag₄FC conversion can be significantly increased by addition of potassium hexacyanoferrate(II) $K_{4}[Fe(CN)_{6}]$ with simultaneous decrease in the concentration of $K_3[Fe(CN)_6]$ to 2.5 wt % and almost constant solution

pH. Using Eq. (2) for the potential of the Ag^+/Ag couple, we found that in the absence of $[Fe(CN)_6]^{4-}$ in the solution this potential is determined by expression (3), and in the presence of this ion, by expression (4).

$$E = E_{Ag^{+}/Ag}^{0} - 0.058 \log (a_{Ag^{+}}/a_{Ag}),$$
 (2)

$$E_1 = E_{Ag^+/Ag}^0 - 0.058 \log a_{Ag}$$

+
$$(1/5) \times 0.058 \log K_s (Ag_4FC) + (1/5) \log 4$$
, (3)

$$E_2 = E_{\rm Ag^+/Ag}^0 - 0.058\log a_{\rm Ag} + (1/4) \times 0.058\log K_{\rm s}({\rm Ag_4FC})$$

$$- (1/4) \times 0.058 \log a_{FC}, \tag{4}$$

where $a_{\rm Ag}$ and $a_{\rm FC}$ are the activities of elemental silver and $[{\rm Fe}({\rm CN})_6]^{4-}$ anion, respectively, and $K_{\rm s}({\rm Ag_4FC})$ is the solubility constant of silver(I) hexacyanoferrate(II). Now, using the above equations, we obtain expression (5).

$$\Delta E = E_1 - E_2 = -0.0029 \log K_s (\text{Ag}_4\text{FC}) + 0.0070 + 0.0145 \log a_{\text{FC}}.$$
 (5)

At 25°C $K_s(Ag_4FC) \approx 1.5 \times 10^{-41}$ [3], which gives Eq. (6):

$$\Delta E = 0.125 + 0.0145 \log a_{FC}.$$
 (6)

In particular, at $a_{\rm FC}$ 0.1 M $\Delta E \approx +0.11$ V; the real value is somewhat greater, because the value of $K_{\rm s}({\rm Ag_4FC})$ given in [3] is probably underestimated because of the pronounced ability of ${\rm Ag_4FC}$ to form colloidal solutions [4]. This difference itself is not so large, but taking into account the fact that $E_{\rm Ag^+/Ag}^0$ varies from -0.10 to +0.80 V and E^0 for the ${\rm [Fe(CN)_6]}^{3^-/{\rm [Fe(CN)_6]}^{4^-}}$ redox couple (+0.356 V) lies in the same range, it can become decisive for the ${\rm Ag}(0) \rightarrow {\rm Ag}({\rm I})$ redox reaction. In particular, at

given $a_{\rm FC}$, $25.0\pm0.1^{\circ}{\rm C}$, $c_{\rm Ag}$ 2.0, 2.5, 3.0, 3.5, and 4.0 mol dm⁻³, and τ 1 h, the conversion of metallic silver into Ag₄FC is 93, 90, 87, 85, and 83%, respectively, and at τ 2 h the conversion in all the cases is nearly quantitative and significantly exceeds the results obtained in the absence of excess $[{\rm Fe}({\rm CN})_6]^{4-}$ ions.

To determine the chemical composition of the immobilized compound, it was recovered from the matrix using the procedure given elsewhere [5]. The matrix was kept in a 5% aqueous solution of trypsine or proteolytic *Bazillus mesentericus* enzyme for 10–15 min at 25–30°C, then the reaction mixture was treated with hot water, and the residues of immobilized compounds were separated from the mother liquors and dried in air at room temperature. Found, %: C 11.1; Ag 67.2; Fe 8.5; N 13.2. C₆Ag₄FeN₆. Calculated, %: C 11.20; Ag 67.06; Fe 8.68; N 13.06.

ACKNOWLEDGMENTS

This work was financially supported by the Competitive Center of Basic Natural Science of the Ministry of Education of the Russian Federation (project no. 97-0-9.2-13).

REFERENCES

- 1. Mikhailov, O.V., *Zh. Obshch. Khim.*, 1998, vol. 68, no. 5, pp. 874–875.
- Kirillov, N.I., Osnovy protsessov obrabotki kinofotomaterialov (Basis of Treatment of Movie and Photographic Materials), Moscow: Iskusstvo, 1978.
- 3. Pearce, J. N. and Ough, L.D., *J. Am. Chem. Soc.*, 1938, vol. 60, no. 1, pp. 80–84.
- 4. Tananaev, I.V., Seifer, G.B., Kharitonov, Yu.Ya., and Korol'kov, A.P., *Khimiya ferrotsianidov* (Chemistry of Hexacyanoferrates), Moscow: Nauka, 1971, p. 43.
- 5. Mikhailov, O.V., *Indian J. Chem.*, *Ser. A*, 1991, vol. 30, no. 3, pp. 252–254.